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Abstract. It is well known that a polymer molecule will tend to take up an ideal random 
flight configuration in a strong solution, because the expansion due to self-interaction is 
masked by the many other interactions with other molecules. In this paper the actual ex- 
pression for the probability distribution is deduced as a function of temperature and solute 
density, since experiment is now reaching the point where such systems can be studied, and 
also because the problem is one of the rare problems in polymer theory which can be solved, 
and is non-trivial. If the effective repulsive interaction near the Flory 0 temperature is 
U = o(T-0) ,  p is the solute density and I is the step length of the polymer, the end-to-end 
distance 

( (R(L)-R(0) )2)  = LI[l +ao((T-8)1’2p-L’2] 

under conditions in which the correction term is small, where a is a constant. This expression 
vanishes at T = f3 and p = 00, as it must. 

1. Introduction 

When polymer solution theory was first developed by Flory and by Huggins, it was 
already realized that when a solution became dense the many interactions between 
chains masked the self-interaction of any one chain, and a chain took up a random 
flight configuration and no longer posed the problem of the self-interacting walk which 
hampered very dilute solution theory. The latter is eased by studying near the Flory 
temperature 8, where positive and negative interactions cancel, so that at T = 0 even 
in dilute solution a random flight may be assumed. When T > 0 the dense solution 
turns out to be a soluble problem in statistical mechanics having analogies with the 
electrolyte theory of Debye and Huckel (Edwards 1968), and the dynamics also turns 
out to be soluble, so that the viscosity of a strong solution (providing it is not so strong 
as to gel) is a soluble problem and simpler than the dilute solution theory (Edwards 
and Freed 1975). Recent experimental developments show that neutron scattering, 
particularly using deuterated samples, can estimate the size of molecules (Cotton et a1 
1971, 1972) and it becomes worthwhile to get an accurate expression for the size of a 
polymer molecule, even if the correction does not dominate the answer as it does in 
dilute solution. 

Thus whereas a free flight will have 

( ( R ( L )  - R(0))’ ) = Ll (1.1) 
where L = NI, N is the number of Kuhn step lengths in the polymer and 1 is the step 

t At present at Science Research Council, State House, High Holborn, London WClR 4TA, UK 
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length, in a dilute solution one of the favoured expressions is : 

, 2 1 5 ~ 6 1 5 1 2  (1.2) 

where U is the effective interaction between monomers which, when one is near 6, has 
the form a( T - e), ie 

( ( R ( L ) -  R(0))') a d 5 ( T  - 6)215L6'5. ( 1 . 3 )  

In a strong solution one can expect the answer to return to ( i . l ) ,  and the form derived 
in this paper will be 

(1 ' 4 )  

which gives a correction vanishing at  T = 6 or at  p = CO, and clearly fails as p -+ 0. 
In fact we shall derive rather wider expressions than this, but whereas a general theory 
for (1.3) and (1.4) is difficult one appears to be on firm ground in (1.4). For a very dense 
system (1.4) will fail because the system will gel. Mathematically it is very easy to produce 
a theory without gelation by putting no cross links in, or by ignoring entanglements. 
If there are no cross links the former is trivially correct except for transient hydrogen 
bonds perhaps. Provided chains are not extremely long, they will slip by one another 
in time, and so even the phenomenon of gelation will not spoil the present calculation 
which relies entirely on equilibrium statistical mechanics. 

In 4 2 a plausible derivation of the answer will be given. A systematic derivation 
allowing higher corrections is relegated to an appendix, since i t  involves more difficult 
mathematics and it agrees with the simple derivation in the region of interest. 

Ll[l+ U C L I ~ ' ~ (  T - 6 ) ' " ~ -  ' I 2 ]  

2. The collective view of a strong solution 

It will be recalled that in the theory of electrolytes, the Coulomb potential l /r becomes 
screened to the value e-"'/r where A = (4np e2 /KT)-  l i 2  is the Debye-Huckel screening 
length. This is usefully written in terms of the Fourier transform 

so that the screening alters l / k 2  to l / ( k 2 + I - ' ) .  Now in a polymer solution the inter- 
action is local compared to the very large distances involved in the end-to-end distances 
which concern the present paper. Thus one can summarize both attractive and repulsive 
parts of the interaction by a pseudopotential U(r) such that the Fourier transform of U 
is effectively a constant, ie 

je ik . rU(r)d3r  = #k to a good approximation (2.1) 

'v U K T  (2.2) 

where U is, to a good approximation, a constant ink. The result obtained earlier (Edwards 
1966) confirmed that uk is screened into 
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or 

The screening therefore alters U(r )  from ~tiTG(r)  to 

where 
p 2  = 12~~113.  

This screening has the effect that now 

O(r)d3r = 0 

since this is the value of Uk when k = 0. 

chain U and m of chain b :  
To see how the screening occurs, one notes the Boltzmann factor between links n of 

The exponent can be split up studying one particular chain, call i t  r:’): 

where X’ means that r:’) is now excluded. The important effects involve large distances, 
hence it is fruitful to consider chain 1 interacting with a polymer density : 

O n  

or in the Fourier transform 

(2.10) 

(2.1 1) 

Thus 

nm n J  J 

and the Boltzmann factor becomes 

(2.13) 

In addition to the Boltzmann factor, there will also be a probability weighting of the 
Pk simply due to the fact that they are the density fluctuations associated with a collection 
of random flight molecules, randomly distributed in space. It is well known, and will 
in effect be rigorously developed in the appendix, that such a distribution will give rise 
to a normal distribution of the Pk with the standard deviation which is obtained directly 
from the random flight statistics. (These need not be corrected by including the potential 
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effects on chains 2 . . . since we only work to the first approximation; the appendix 
however is indeed self-consistent.) Directly then 

(2.14) 

(2.15) 

(2.16) 

dx ,-k2lx1L2/6 hk j  since k is small and L is large 
X 

5 Pn j: 
(2.17) 

= 12p,6kj/k212 (2.18) 

where p, = Nn = NLIl and there are N chains of n links, which corresponds to a 
distribution : 

(2.19) 

since 6kj -+ ~5(k+j)(2z)~/I/  and 

exp [ - ( 6) j d k d ’ j  6(k + j )  
(2n)3 1 

is the joint probability. The total distribution in the Pk is then 

where p = NL/Vis proportional to physical density. When the Pk are integrated out 
by completing the square, this gives 

where p = p - U Z eikr g’. 
The remaining terms in r ( l )  are therefore in the screened form 

which equals 

(2.21) 

(2.22) 

(2.23) 

Since the argument is all on the assumption that 0 is weak, the change in ( (R(L)-  R(0))’) 
can be calculated in perturbation theory. This was done long ago by Fixman for short- 
range forces and gives corrections involving uL1/’, which will not be small for large 
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enough L, but in the present case the screening gives an answer which is independent of 
L, and in a quite straightforward calculation (given in the appendix) gives 

((R(L)-R(O))’) = Lf(1 +a,p-”2v”2) (2.24) 

where a, is the constant 2J3/nf5l2. A self-consistent approach would have given 

( ( R ( L )  - R(o))2) = Lf€ 
- 1 - 1 1 / 2 Y 1 / 2 C - 5 / 2  

C -  

(2.25) 

but this does not represent a sound basis for a theory when p - 0, serving simply to 
reassure that c N 1 is a valid basis for approximation. 

Near the 6 temperature one may expand U in terms of T - 6, 

= o(T-e) .  (2.26) 

(The KTabsorbed into the definition of Y would only affect o to order ( T -  0)’ ; moreover, 
since U represents both repulsive and attractive parts of the potential, the KTis partly 
conventional.) One then obtains the final form 

(2.27) ( ( R ( L ) - R ( ~ ) ) ~ )  = Lf[1 + a p -  i’2(T-O)1/2] 

where a = a,w. 

3. Extrapolation to dilute solutions 

It is well known that in a dilute solution the end-to-end distance satisfies a power law 

((R(L)-R(0))2) = LS 

wherep - 1.2experimentallyandcertain theories give f l  analytically,egp = 8 .  Although 
this paper is not concerned with dilute solution it is of interest to produce an analytical 
formula which extrapolates between (2.27) and a dilute solution approach. To this 
one must choose some really simple dilute solution approach, and this we do by taking 
a very crude model in which an effective step length f / a  is used to model the polymer, 
ie 

((W) - R(o))2)  = Ll/u, a = a(L, U ,  p).  (3.1) 

The work above has calculated c = a- but a is a better parameter as we now show. 
The mathematical problem is that of a random walk with a potential in Fourier transform 

V 2  

v + k2f2/12pa 
U = v -  (3.2) 

where now we are explicitly including a in the k dependence of U. Mathematically 
we must evaluate 

which we have shown reduces to a single-chain model : 
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The calculation for a is now made by simulating this by putting 

and treating the expression in braces as something whose effect will be made zero by 
the choice of a. (Alternatively a variational calculation can be adopted-it yields the 
same results.) Calculating ( ( R ( L ) -  R(0))’) from (3.5) by expansion, one gets 

Ll Ll 
a a 
- = ((R(L)-R(O))Z) = ;+ { Y L l  +A(a ,  p, L) 

where the term in braces stems from the one in (3.5) and is calculated to first order in 
that expression, in (3.5), and 

ie redefining k --* ka”2, 

e - k*Is/6 l - a  k414 1 7 = joL ds j d3k a1/zs2- 
12p k2l2/12p + v 

or 

where b is a constant, or 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

This integral is not available in simple form, but a crude evaluation to illustrate its 
properties is given by 

If Lvp -, CO, then 

If Lvp -, 0, then 
a = v - 2 : 5 ~ - 1 / s  

(3.12) 

(3.13) 

(3.14) 

This calculation is offered merely as being indicative of what might be a starting point 
for a more elaborate theory. Other results could follow, for example the correlation 
function. 
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has the values 
r - 4 1 3  for the dilute case 

for the concentrated case. 

(3.16) 

r 

4. Conclusion 

This paper has aimed to give a precise form to statements commonly made in the litera- 
ture, particularly by Flory, which have not always been fully accepted. It fully confirms 
Flory's statement that in a concentrated solution a polymer takes random flight con- 
figuration, by explicitly calculating the extent to which it does not do  so. 

The results of this paper have consequences in neutron diffraction from polymers, 
since the quasi-elastic coherent scattering will tend to revert to Lorentzian form due to 
interactions. The results also will permit a more detailed study of polymer viscosity 
in concentrated solutions than that given by Edwards and Freed (1975). Dr  Freed and 
I hope to return to these points in later papers. 
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Appendix 

Using the exact expression for the partition function of a system of N interacting chains 
(4 : 

Z = e-F/KT = N ds, ds, 6 ( r 4 - r , )  

where N is the normalization, a, fl are chain labels, 1 is the step length and, as before, 
u6(r - r')  is the pseudopotential term (8 2). One may formally parametrize this inter- 
action by noting that 

$5 ss ds, ds, 6(r, - r,) = v 03 d3k ds, eikrE ds, e-ikrfl = 1 d3k f ( k ) f (  - k )  
21 B 

so that 
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where 6 + k  means an integral over the whole set of variables &.  Then one has 

J1' 6r,64, exp( f if ds, - f &k)z d3 k- 2i f &k)f(k) d3k) f ,-PIKT = 

x exp -2i 4(k)f(k)d3k (an identity). ('4.1) ( J  
The corrections to g and A are of the order of the square of the term in i s  4 ( k ) f ( k )  d3k 
and are of course real. This means that we are unable to  use the Feynman variational 
principle. Nevertheless we can get a good systematic procedure which is justified post 
hoc by expanding the expression 

xj lr~'21(02-g- '(w))do- j lf$k12(1-A;1)d3k 

to order m say, and expression 

( 2i j 4 k f k  d3k) 

to order 2m, and minimizing their joint effect, as was done in the version in 8 2. In fact 
we just take the term in braces to  order one and the term in parentheses to order two, 
but a study of higher-order terms shows that within logarithms the procedure amounts 
to an expansion in (T  - 6)1'2p-  ' I 2 .  Evaluating the terms one finds 

where 4' = ~ / 2 l ~ ( 2 7 l ) ~  was from the definition off(k) : 

f(k) = 5 1 f ds, e+ik.r=(s-). 
a 

This value is now minimized by differentiating F(Ak, g(o)) : 

6 F  3LN 3LN - = -g-'(a)--a2 
6g(a) 4n 4n 

64 .3 )  

= 0 (A.4) 
sa d o  sin2(&m) + t 2 L N  d3k A, f 371 
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(coupled equations for A p  and g(a)). 
These equations are analogues of familiar forms in quantum field theory, the addi- 

tional terms being 'self-energy' and 'polarization' terms. To get an approximate 
solution, we write g- ' (w)  = cw2, the Gaussian assumption. We use this in (AS)  to 
get a form for Ap, then put Ap in (A.4) and it is found that the result for g is consistent 
with the original assumption (ie we require a self-consistent argument) : 

Ai1 = 1 + p 2 / p 2  p2 = 24(27c)352(LN/V)c/I 

Ap = P 2 A P 2  + P 2 )  
back in equation (A.4): 

47c I dk k64n I ds sin2(&s) exp (T) . co2 = 0 2  -- p1/7L ~ 

9 k 2  + p 2  

In the small-o region, we expand sin2(ios) = and get a consistent result 

g -  yo) = o2 -o2f(c)  

and this consistency gives a relation for E : 

c = 1 -f(c). 

From (A.6) 

471 
9 

where p = LN/V,  proportional to the physical density. c = 1. We put c = 1 in the right- 
hand side. Also, near the 0 point we can express 

U = ~ ( T - 8 ) + 0 [ ( 7 ' - 0 ) ~ ] .  

Absorbing a and other constants, 
T - 8  112 

E = 1 -b( --) 
A.I .  Regions of validity of the above derivation 

One must have 

<< 1 
' j 2  1 2J3 

112 I/ 112 (;) iN) 1.11 << (L12)"2 
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where u o  is the volume of space explored by a randomly walking chain, 

volume of solvent V 
N length of chain ‘ 

= L‘, = - 

Hence one must have 

where 

and the condition becomes roughly : c, << c 0 .  This means we have to  be in regions (i) 
and (ii) of the density classification given in Edwards (1966). 

A.2. Validity of the small-a expansion 

We evaluate the integrals in (A.6) exactly: 

and 

6ca2 a2 
ds sin2(&as) exp - = ( - kg:isi k21(k412/62c2 -t 0 2 )  

Therefore, 
1 6 7 ~ 5 ~ 6 ~ ~ ~  o2 j: dk k4 

€ 0 2  = 0’ - 
91’ (k2 + b2)(k4 + u4) 

where u2 = 6raIl and 

dk k4 7c U Io1 (k2 + p2)(k4 + or4) 

The conditions for self-consistency are : 
( ( 4 )  for small o, the correction term is small and has a’ dependence; 
( h )  for large a, the correction term has a2 dependence so that the relation is 

co2 = a2 --a“ 

and for large enough a we have a2 D aoa; 

€a2 = o2 --a“ - bo2 then 
(c) for all intermediate values of a, 1/L < a < 1/1, we have the situation that, if 

a << 02-”  a = @,U). 
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Now since p = NIiV and since the condition for self-consistency is p >> 4(u/li) one 
finds for polydimethylsiloxane with I ,  - 3 A and a typical degree of polymerization of 
2250, the value ( u / I i )  in the range 1 to 10- and hence p - 1 %. 
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